Проект длиной в 8 лет — знал бы, ни за что не ввязался: свой 2-тактный мотор

Когда-то давно я понял, что мне мотора Иж Планета не хватает и я решил радикально модифицировать его — сделать собственный цилиндр. По ходу сменился даже мотор. За его время я успел закончить школу, поступить в один вуз, вылететь и каким-то чудом перевестись в другой и отучиться там еще 5 лет и все равно я закончил и его уже два года назад. Знал бы я, что так оно растянется, наверное, не ввязался бы. Поскольку мы воспринимаем время относительно прожитого в сознательном возрасте, то для меня оно растянулось на половину прожитого времени.

Прошло уже 6 лет с момента выхода первой и последней заметки по этому проекту(Свой 2-тактный мотор. CR620 рекомендуется к ознакомлению). Тогда я остановился из-за проблем с аутсорсом в металлообработке. Кто не может, кто не хочет, кто делает бесконечно долго, кто и детали назад возвращать не хочет. А город в котором я живу имеет славную промышленную историю и был центром Петровской индустрии 18-века, но от славного прошлого ныне остался один корень в названии города и несколько действующих предприятий, на которых занято порядка единиц процентов населения. А сейчас не 90-е и даже не 00-е, когда можно было договорится с человеком с завода чтобы он что-то такое эдакое для тебя сделал. Теперь у них есть работа и КПП на входе, как я потом узнал — номинальное. Вся эта история с передачей деталей где они лежат, а не делаются, поиск новых мест и тому подобное блуждание длилась несколько лет. Оказалось, что отлить сложную алюминиевую отливку у сарая на родительской даче я смог, а обработать, что не выглядело проблемой изначально — нет.

В это же время я познакомился с мастером из университетской мастерской, который сначала под присмотром, а потом и самостоятельно позволял мне работать на станках. Жаль только то, что станки были чуть больше настольного и моя отливка не имела шанса влезть в них. Однако, я делал на них маленькие детали на продажу и заработал на токарный станок уже промышленного уровня, пусть и выпущенный на заводе сомнительной репутации в АрССР.

Из помещений, где я мог что-то делать, был кусок в 3х3м сарая на родительской даче и гараж-ракушка. В одном нет места в другом света. Я решил, что с электричеством проблема проще и перевез станок в гараж. Там я его отмыл, перебрал и изучил. Казалось бы, электричество есть в кооперативе напротив через кусты и грунтовку, в 10м. Связался с председателем и предложил ему платить все взносы за право покупать у его кооператива электричество. Он категорически был против. Фейл. Соседей пенсионеров мне тоже убедить не удалось. Фейл. Появилась идея снять с товарищами гараж для хранения и ремонта мототехники. Звонили по объявлениям, ездили смотреть и каждый раз общение с собственником помещения заканчивалось после вопроса о установке станка. Фейл. Проект как обычно отложен на следующий год.

К концу лета следующего года я, видимо, настолько утомил родителей терриконами отходов литейного производства на даче (на мой взгляд хорошо разбавляли сельский пейзаж и избавляли от стрижки травы в пределах пары метров от них), что они решили купить мне гараж у дома и с электричеством, аж с тремя фазами по стенке. Там наконец токарный станок ожил, а я смог начать обрабатывать отливку цилиндра после 2,5 лет выдержки.

Когда я наконец обработал отливку, то столкнулся с очередной проблемой: я договорился с человеком, который делает сверхтвердые гальванические покрытия на цилиндрах ДВС и проектировал цилиндр именно под покрытие, а пока время шло, человек уже перестал этим заниматься или просто не стал браться, а другие либо делали дорого, либо как-то очень подозрительно путались в ответах. К тому же, колодцы золотников были выполнены вертикальными, при проектировании я не мог думать как технолог, ибо не имел своей производственной базы. Такие я не мог обработать сам и отдал на сторону, где цилиндр повис на полгода. Так проект встал, хотел закончить к лету, никогда такого не было и вот опять. Нужно было делать чугунную гильзу, да только к тому времени накопилось столько новых идей, что проект 4-годичной давности устарел и тащить его не было никакого желания. Так эта ветвь и остановилась навечно.

Зимой был подготовлена новая версия цилиндра. Именно с этого момента можно отсчитывать хронологию проекта. Отличительной особенностью ее является обилие «механизации» — два клапана в каналах выпуска и золотники в каналах продувки.
Начнем, пожалуй, с небольшой теории о мощностных клапанах в двухтактных двигателях внутреннего сгорания.

Введение

К настоящему времени в двухтактных двигателях с кривошипно-камерной продувкой применяются системы управления сечением и/или фазой выпускного порта. Данные системы обеспечивают сглаживание кривой мощности. Изменение фазы или сечения выпускного порта выполняется с помощью заслонки, расположенной в выпускном канале. Ее положение зависит от оборотов коленчатого вала. Привод заслонки бывает пневматическим, механическим или электрическим. Например, на моторе мотоцикла Yamaha TZ500 при высоких оборотах, около 10500 мин-1, значение фазы выпуска составляет 202deg, а на низких около 180deg. На рисунке представлена конструкция мощностного клапана фирмы Yamaha.

Как и для выпуска, для продувки тоже существует зависимость оптимальной фазы продувки от оборотов, обусловленная компромиссом между скоростью газа в потоке продувки, потерями свежей смеси через выпуск и объемом ее же, поступающей за время продувки. Данная зависимость линейна, что можно увидеть из графика, представленного ниже.

В отличие от выпускного порта, каналы продувки характеризуются еще и углами выхода: горизонтальными и вертикальными. В случае пятиканальной продувки обычно получается четыре ненулевых и различных горизонтальных угла и пять (по два на 1-4 каналы и один на 5-й) вертикальных.

Читать статью  УМЗ 4178: характеристики, обслуживание, ремонт

Горизонтальные углы продувочных каналов: A, B, C, D

Вертикальные углы основных каналов продувки

Данные углы необходимы для получения характерной петли продувки. Такой способ продувки называется петлевая продувка и обеспечивает наиболее эффективное удаление отработанных газов без увеличения числа подвижных элементов двигателя и усложнения его конструкции. Поэтому в настоящее время только он применяется на всех двухтактных двигателях, кроме двухтактных дизелей. Из-за важности углов выхода продувочных каналов применять методы, используемые для управления выпуском, нельзя. Поскольку они будут создавать либо нежелательные завихрения в канале продувки, либо изменять его углы выхода.

Авторы [A. Graham Bell. Two-Stroke Performance Tuning. Haynes Publishing, 1999.] утверждают, что во время продувки возникают колебания с собственной частотой :

где:
— скорость звука в продувочном канале;
— объем кривошипной камеры без учета объема продувочных каналов;
— средняя длина продувочного канала;
— средняя площадь поперечного сечения продувочного канала;
— ширина среднего поперечного сечения канала;
— высота среднего поперечного сечения канала.
Выражение представляет собой поправку, учитывающую влияние входной части продувочного канала.
Эта собственная частота, , должна быть равна:

где:
— чистота оборотов коленчатого вала двигателя;
— фаза продувки.

Таким образом, из выражения (2) следует, что собственная частота колебаний, возникающих во время продувки, прямо пропорциональна частоте оборотов двигателя, но правая часть выражения (1) не зависит от частоты вращения коленчатого вала. Поэтому продувка оптимально работает лишь в узком диапазоне оборотов, а для расширения рабочего диапазона необходимо внести зависимость от оборотов в правую часть выражения (1). Проще всего это сделать, введя зависимость средней площади поперечного сечения продувочного канала от оборотов. Чтобы не вносить нежелательных завихрений в поток газа в продувочном канале, желательно изменять сечение каналов продувки, меняя их количество. Например, с помощью золотников, перекрывающих некоторые каналы продувки. В рамках данного проекта предлагается перекрывать золотниками дополнительные каналы продувки.

Золотники в каналах продувки: левый полностью открыт, правый закрыт

Влияние данного решения было исследовано с помощью компьютерного моделирования продувки в пакете программ SolidWorks Flow Simulation. Продувка выполнена при постоянной разнице давлений между входом в каналы продувки и выходом из выпускного канала. Поршень считался неподвижным и находящимся в нижней мертвой точке. Процессы впуска и выпуска не учитывались. Разница давлений была выбрана из разницы объемов под поршнем в нижней и верхней мертвой точке и составляла 0,6 кг/см2. Из-за указанных выше допущений, результаты расчета в этом стационарном приближения можно рассматривать как качественные без количественной оценки. Поскольку, например, разделить во времени или пространстве процессы выпуска и продувки нельзя. В этом и заключается главная трудность для компьютерного моделирования двухтактных двигателей с кривошипно-камерной продувкой.

На рисунках видно, что закрытие золотников существенно влияет на распределение скоростей потока и вид петли продувки: при закрытых дополнительных каналах (трехканальный режим) увеличивается скорость газа в процессе продувки и петля продувки становится более выраженной и отдаленной от выпускного окна, что должно снизить потери свежей смеси через выпускной порт и снизить коэффициент остаточных газов, в тоже время, высокая скорость на выходе потока из каналов продувки при трехканальной продувке указывает на наличие узкого места, которое будет ограничивать расход газа через двигатель, а значит и мощность при высоких оборотах. В случае пятиканального режима смешивание газов должно быть больше, а, значит, возрастет коэффициент остаточных газов, но при этом наблюдается меньшая скорость, и «узким» местом становится канал выпуска, что снижает потери свежей смеси через него.

Траектории 2000 частиц при открытых золотниках в дополнительных продувочных каналах (пятиканальный режим)

Траектории 2000 частиц при закрытых золотниках в дополнительных продувочных каналах (трехканальный режим)

Кроме золотников в каналах продувки, планируется установить в выпускном канале мощностной клапан (МК) для проверки совместной работы обоих систем. Наилучшим образом для исполнительного механизма МК подходит заслонка в виде секторного золотника. Это объясняется тем, что кромка заслонки такого мощностного клапана во всем диапазоне рабочего хода находится максимально близко к рабочей поверхности цилиндра (то есть, при малом угле поворота траектория движения точке на кромке золотника приближена к прямой), а не только в нижнем положение, как в случае цилиндрического золотника или наклонного шибера. Кроме того, такая конструкция заслонки не создает сильных завихрений за собой как шиберная заслонка, движущаяся параллельно оси цилиндра.

Заслонка мощностного клапана(МК) в опущенном состоянии

Продувки при закрытых золотниках в дополнительных каналах продувки и опущенной заслонке МК

Разработка моделей

На основании информации (таблица), полученной входе изучения цилиндров мотоциклов Kawasaki KX500, Honda CR500, Yamaha YZ490 и CZ 514, были выбраны фазы продувки и выпуска соответственно равные 125deg и 186deg, с полностью закрытым мощностным клапаном фаза выпуска уменьшается до 156о. Число продувочных каналов выбрано равным пяти и выпуск из двух основных окон и двух дополнительных портов. На впуске был установлен лепестковый клапан.

Ход поршня, мм Длина шатуна, мм Высота выпускного окна, мм Высота продувочного окна, мм Фаза выпуска, град. Фаза продувки, град.
Honda CR500 79 144 34 15.5 180.1 119.5
Yamaha YZ490 82 137 37.8 16.8 188.5 123.7
Cezet type 514 72 130 32 17 183.4 131.5
Kawasaki KX500 86 145 36.5/40 17 180.1/189.3 121.3
Проект CR724 79 144 26/36 17 156/185.8 125.3

Примечание: Если в ячейке указаны два параметра высоты выпускного окна или фазы выпуска, то первая относится к состоянию с полностью закрытым МК, а вторая с открытым.

После замеров сопрягаемых с цилиндром элементов базового двигателя было выполнено создание трехмерной твердотельной модели газораспределительных каналов и сопряженных с ними полостей. Все чертежи были выполнены с использованием пакета программ SolidWorks.

Твердотельная модель газораспределительных каналов

Начало именно с твердотельной модели каналов позволяет минимизировать число толстых мест отливки и уменьшить ее массу. На следующем шаге вокруг модели каналов была построена оболочка с толщиной стенок 4-6 мм и нижним крепежным фланцем.

Оболочка каналов без выреза модели каналов

Рубашка охлаждения была получена построением вокруг оболочки каналов второй оболочки, такой чтобы между обоими оболочками в горячих местах (верхняя часть цилиндра и каналы выпуска) оставалось расстояние в 6-10 мм. Толщина стенки оболочки каналов охлаждения около 4 мм. Вход в рубашку охлаждения находится внизу цилиндра под каналом выпуска и выше верхней кромки продувочных каналов рубашка охватывает весь периметр цилиндра. Также на этом этапе были построены плоскости крышек системы газораспределения и фланцы впуска и выпуска.

Читать статью  5 способов проверить двигатель при покупке подержанной машины - Лайфхак - АвтоВзгляд

Твердотельная модель цилиндра без выреза модели каналов

Модель цилиндра получена при вычитании из полученной на предыдущем этапе модели каналов, таким образом модель каналов формирует полости. Далее была выполнена разметка крепежных отверстий, посадок подшипников и гильзы. На этом построение модели цилиндра закончено.

Построение гильзы и золотников было выполнено так же с помощью вычитания модели каналов из соответствующих твердотельных «заготовок».

Получилось и так много текста, поэтому за сим завершаю эту часть. Следующая будет повествовать о изготовлении литейной оснастки и выполнении отливки цилиндра.

Двухтактный двигатель внутреннего сгорания своими руками

Самодельный двигатель можно изготовить несколькими способами. Обзор начнем с биполярного или шагового варианта, который представляет собой электрический мотор с двойным полюсом без щеток. Он имеет питание постоянного тока, разделяет полный оборот на равные доли. Для функционирования данного прибора потребуется специальный контроллер. Кроме того, в конструкцию приспособления входит обмотка, магнитные элементы, передатчики, сигнализаторы и узел управления с панелью приборов. Основное предназначение агрегата – обустройство фрезеровочных и шлифовальных станков, а также обеспечение работы различных бытовых, производственных и транспортных механизмов.

Типы моторов

Самодельный двигатель может иметь несколько конфигураций. Среди них:

  • Варианты с магнитом постоянного действия.
  • Комбинированная синхронная модель.
  • Переменный двигатель.

Привод с постоянным магнитом оборудуется основным элементом в роторной части. Функционирование таких приборов основано на принципе притяжения или отталкивания между статором и ротором приспособления. Такой шаговый электродвигатель оснащен роторной частью из железа. Принцип его работы заключается на фундаментальной основе, согласно которой, предельно допустимое отталкивание производится с минимальным зазором. Это способствует притяжению точек ротора к полюсам статора. Комбинированные устройства сочетают в себе оба параметра.

Еще один вариант – это двухфазные моторы шагового типа. Прибор представляет собой простую конструкцию, может иметь два типа обмотки, легко устанавливается в необходимом месте.

Как сделать простой двигатель Стирлинга (с фотографиями и видео)

Давайте сделаем двигатель Стирлинга.

Мотор Стирлинга – это тепловой двигатель, который работает за счет циклического сжатия и расширения воздуха или другого газа (рабочего тела) при различных температурах, так что происходит чистое преобразование тепловой энергии в механическую работу. Более конкретно, двигатель Стирлинга представляет собой двигатель с рекуперативным тепловым двигателем с замкнутым циклом с постоянно газообразным рабочим телом.

Двигатели Стирлинга имеют более высокий КПД по сравнению с паровыми двигателями и могут достигать 50% эффективности. Они также способны бесшумно работать и могут использовать практически любой источник тепла. Источник тепловой энергии генерируется вне двигателя Стирлинга, а не путем внутреннего сгорания, как в случае двигателей с циклом Отто или дизельным циклом.

Двигатели Стирлинга совместимы с альтернативными и возобновляемыми источниками энергии, поскольку они могут становиться все более значительными по мере роста цен на традиционные виды топлива, а также в свете таких проблем, как истощение запасов нефти и изменение климата.

В этом проекте мы дадим вам простые инструкции по созданию очень простого двигателя

DIY
Стирлинга с использованием пробирки и шприца
.

Как сделать простой движок Стирлинга – Видео

Компоненты и шаги, чтобы сделать моторчик Стирлинга

1. Кусок лиственных пород или фанеры

Это основа для вашего двигателя. Таким образом, он должен быть достаточно жестким, чтобы справляться с движениями двигателя. Затем сделайте три маленьких отверстия, как показано на рисунке. Вы также можете использовать фанеру, дерево и т.д.

2. Мраморные или стеклянные шарики

В двигателе Стирлинга эти шарики выполняют важную функцию. В этом проекте мрамор действует как вытеснитель горячего воздуха от теплой стороны пробирки к холодной стороне. Когда мрамор вытесняет горячий воздух, он остывает.

3. Палки и винты

Шпильки и винты используются для удержания пробирки в удобном положении для свободного перемещения в любом направлении без каких-либо перерывов.

4. Резиновые кусочки

Купите ластик и нарежьте его на следующие формы. Он используется для того, чтобы надежно удерживать пробирку и поддерживать ее герметичность. Не должно быть утечек в ротовой части пробирки. Если это так, проект не будет успешным.

5. Шприц
Шприц является одной из самых важных и движущихся частей в простом двигателе Стирлинга. Добавьте немного смазки внутрь шприца, чтобы поршень мог свободно перемещаться внутри цилиндра. Когда воздух расширяется внутри пробирки, он толкает поршень вниз. В результате цилиндр шприца перемещается вверх. В то же время мрамор катится к горячей стороне пробирки и вытесняет горячий воздух и заставляет его остывать (уменьшать объем).

Пробирка Пробирка является наиболее важным и рабочим компонентом простого двигателя Стирлинга. Пробирка изготовлена ​​из стекла определенного типа (например, из боросиликатного стекла), обладающего высокой термостойкостью. Так что его можно нагревать до высоких температур.

Как работает двигатель Стирлинга?

Некоторые люди говорят, что двигатели Стирлинга просты. Если это правда, то так же, как и великие уравнения физики (например, E = mc2), они просты: на поверхности они просты, но богаче, сложнее и потенциально очень запутаны, пока вы их не осознаете. Я думаю, что безопаснее думать о двигателях Стирлинга как о сложных: многие очень плохие видео на YouTube показывают, как легко «объяснить» их очень неполным и неудовлетворительным образом.

На мой взгляд, вы не можете понять двигатель Стирлинга, просто создав его или наблюдая за тем, как он работает извне: вам нужно серьезно подумать о цикле шагов, через которые он проходит, что происходит с газом внутри, и как это отличается из того, что происходит в обычном паровом двигателе.

Все, что требуется для работы двигателя, – это наличие разницы температур между горячей и холодной частями газовой камеры. Были построены модели, которые могут работать только с разницей температуры 4 ° C, хотя заводские двигатели, вероятно, будут работать с разницей в несколько сотен градусов. Эти двигатели могут стать наиболее эффективной формой двигателя внутреннего сгорания.

Двигатели Стирлинга и концентрированная солнечная энергия

Двигатели Стирлинга обеспечивают аккуратный метод преобразования тепловой энергии в движение, которое может привести в движение генератор. Наиболее распространенная схема состоит в том, чтобы двигатель был в центре параболического зеркала. Зеркало будет установлено на устройство слежения, чтобы солнечные лучи фокусировались на двигателе.

* Двигатель Стирлинга как приемник

Возможно, вы играли с выпуклыми линзами в школьные годы. Сосредоточение солнечной энергии для сжигания листа бумаги или спички, я прав? Новые технологии развиваются день ото дня. Концентрированная солнечная тепловая энергия приобретает все большее внимание в эти дни.

Читать статью  Контрактные двигатели Alfa Romeo 156 (932): купить б. у. двигатель

Выше приведен короткий видеофильм о простом двигателе с пробиркой, использующим стеклянные шарики в качестве вытеснителя и стеклянный шприц в качестве силового поршня.

Этот простой двигатель Стирлинга был построен из материалов, которые доступны в большинстве школьных научных лабораторий и может быть использован для демонстрации простого теплового двигателя.

Диаграмма давление-объем за цикл

Процесс 1 → 2 Расширение рабочего газа на горячем конце пробирки, тепло передается газу, и газ расширяется, увеличивая объем и толкая поршень шприца вверх.

Процесс 2 → 3 По мере движения мрамора к горячему концу пробирки газ вытесняется из горячего конца пробирки на холодный конец, а по мере движения газа он отдает тепло стенке пробирки.

Процесс 3 → 4 Из рабочего газа отводится тепло, и объем уменьшается, поршень шприца движется вниз.

Процесс 4 → 1 Завершает цикл. Рабочий газ движется от холодного конца пробирки к горячему концу, поскольку мраморные шары вытесняют ее, получая тепло от стенки пробирки, когда она движется, тем самым увеличивая давление газа.

Монополярные модификации

Самодельный двигатель этого типа состоит из единой обмотки и центрального магнитного крана, влияющего на все фазы. Каждый отсек обмотки активируется для обеспечения определенного магнитного поля. Так как в подобной схеме полюс в состоянии функционировать без дополнительного переключения, коммутация пути и направления тока имеет элементарное устройство. Для стандартного мотора со средней мощностью хватает одного транзистора, предусмотренного в оснащении каждой обмотки. Типичная схема двухфазного двигателя предполагает шесть проводов на выходном сигнале и три аналогичных элемента на фазе.

как сделать двигатель

Микроконтроллер агрегата может использоваться для активизации транзистора в автоматически определенной последовательности. При этом обмотки подключаются посредством соединения выходных проводов и постоянного магнита. При взаимодействии клемм катушки вал блокируется для проворачивания. Показатель сопротивления между общим проводом и торцовой частью катушки пропорционален аналогичному аспекту между торцами проводки. В связи с этим длина общего провода в два раза больше, чем соединительная половина катушки.

Биполярные варианты

Самодельный шаговый двигатель этого типа оборудован одной обмоткой фазы. Поступление тока в нее осуществляется переломным способом при помощи магнитного полюса, что обуславливает усложнение схемы. Она обычно агрегирует с соединяющим мостом. Имеется пара дополнительных проводов, которые не являются общими. При смешивании сигнала такого мотора на повышенных частотах эффективность трения системы снижается.

Создаются также трехфазные аналоги, имеющие узкую специализацию. Они применяются в конструкции станков с ЧПУ, а также в некоторых автомобильных бортовых компьютерах и принтерах.

Вдохновили ролики о самодельных моторах. Решился и сделал такой с нуля

Приветствую тебя, уважаемый читатель.
В этой статье я расскажу, как сделал самодельный бесщеточный мотор полностью с нуля в домашних условиях. Кому интересно, усаживайтесь поудобнее и начинаем.

На сборку двигателя своими руками меня подтолкнул не один десяток роликов с зарубежных каналов, там люди собирали электромоторы из того, что было и они хорошо работали и запускались с первого раза.

Вот и мне после просмотра данных роликов захотелось собрать что-то свое, что заработает и это можно будет применить в своих самоделках.

Нашел я у себя трансформатор от микшера, также заказал 50 штук неодимовых магнитов из Китая и контроллер для управления двигателем.

Диаметр тора от моего трансформатора равен 62 мм, по ним я сделал чертеж в компасе для ротора.

Из металлического листа вырезал круг диаметром 62 мм, таких же размеров сделал круг из фанеры, толщиной 3 мм.

На металлическом диске сделал разметку для центров магнитов, все работы проводил при помощи циркуля и транспортира.

Из фанеры я вырезал диск диаметром 37,65 мм, он будет держать магниты на одинаковом расстоянии от вала.

Далее я из фанеры выпилил кольцо с внутренним диаметром 62 мм, который затем приклеил на ротор с помощью эпоксидной смолы. (Магниты устанавливал чередуя полюса, для этого взял один из магнитов и проверял, притягивается ли магнит или отталкивается и так расставил все 12 штук поочередно — притягивается, отталкивается).

После высыхания эпоксидки я слегка отшлифовал поверхность, убрав наплывы.

Затем я принялся за изготовление статора из тора трансформатора. Сделал на скорую руку станок из точила и проделал пропилы в торе, постепенно измеряя зазор штангенциркулем, в идеале он должен быть одинаковым.

В итоге получился такой тор, процесс пропиливания пазов занял много времени, около 6 часов за станком.

После того, как пропилы готовы, я взял лак для ногтей у своей сестры ( с ее разрешения) и покрасил зазоры, чтобы защитить обмотку от случайного КЗ.

Одного лака для защиты недостаточно, я взял обычный лист А4 и нарезал из него полосок, ими обклеил каждый зуб статора.

Для того, чтобы ротор вращался, необходимо сделать крепление для подшипника. Я взял алюминиевый диск, сделал в нем отверстия и проточил их напильником, затем примотал его к статору на капроновую нитку и промазал лаком. (Листайте галерею

Как из автомобильного генератора сделать мощный низковольтный двигатель

По своей сути, автомобильный генератор практически не отличается от трехфазного асинхронного электродвигателя, за тем исключением, что в генераторе используется не короткозамкнутый ротор, а с обмоткой возбуждения.

Переделать такой генератор в мощный и высокооборотистый электродвигатель не оставит труда. Контроллер для его управления можно сделать самому всего из 3 транзисторов, без применения микросхем.

Детали

  • Транзистор IRF3205 — 3 шт. — http://alii.pub/68qqw8
  • Диод 1N4007 — 6 шт. — http://alii.pub/5m5na6
  • Резисторы кОм — 3шт.; 4,7 кОм — 1 шт. — http://alii.pub/5h6ouv
  • Переменный резистор 100 кОм. — http://alii.pub/5o27v2
  • Аккумулятор 18650 — http://alii.pub/5becfz

Изготовление контроллера для трехфазного двигателя

Схема контроллера крайне проста и напоминает трехфазный мультивибратор.

Возбуждение на ротор подается от аккумулятора 3,7 В. При помощи переменного резистора можно производить регулировку оборотов двигателя.

Схема, для наглядности, собирается навесным монтажом. Мосфеты установлены на радиатор через теплопроводящую диэлектрическую прокладку.

Как сделать из генератора мощный электродвигатель с низковольтным питанием

Далее, нужно немного доработать будущей электродвигатель. Удаляем колодку с выпрямительным блоком с генератора.

Припаиваем провод к общему проводу соединения катушек генератора.

Припаиваем провода к фазам и изолируем термоусадкой.

Припаиваем провода к щеткам коллектора ротора, далее к колодке с аккумулятором.

Устанавливаем аккумулятор в бокс, подаем питание от источника постоянного тока на схему 12-19 В. Движком переменного резистора регулируем обороты двигателя.

Максимальная скорость вращения более 7000 об/мин.

Вся «соль» данной переделки в том, что на выходе вы получаете мощный и высокооборотистый электродвигатель с низковольтным питанием. Ну а где его можно применить — решать как всегда вам.

Смотрите видео

Источник https://habr.com/ru/post/513318/

Источник https://avto-lover.ru/obuchenie/samyj-prostoj-dvs.html

Источник https://sdelaysam-svoimirukami.ru/8570-kak-iz-avtomobilnogo-generatora-sdelat-moschnyj-besschetochnyj-dvigatel.html

Понравилась статья? Поделиться с друзьями: