Содержание

Водородный транспорт — хорошая идея только в теории

Я очень хочу потыкать острой палкой в идею об электрических автомобилях на водородных топливных элементах (ТЭ). Некоторые люди совершенно очарованы этой идеей. Как можно не очароваться? На вход подается водород, абсолютно «чистое» топливо, а на выходе получается только вода или пар, и никакого углекислого газа, оксидов азота, сажи, и т. д. Водородный двигатель — тихий и компактный. Это не тепловой двигатель, и поэтому на него не распространяются жесткие ограничения цикла Карно. Заправка очень быстрая и не сильно сложнее чем обычная бензиновая заправка.

Кроме того, если вы — нефтяная компания, и спрос на бензин и дизель начнет уменьшаться, вы только что обнаружили новое топливо, которое можно продавать! Вы спасены!

Если вы живете в частном доме и хотите потреблять меньше энергии, вы думаете что можете делать водород из воды используя электричество от солнечных панелей на крыше, убивая сразу двух зайцев: вы получаете топливо для вашей машины и запасаете излишки энергии от солнечной генерации, с помощью единственной магической технологии. Звучит потрясающе!

К сожалению, дьявол кроется в деталях, и он не то чтобы сильно прячется, если вы будете смотреть внимательно.

В моей предыдущей статье я обсуждал эффективность в энергетических циклах двигателей внутреннего сгорания и электрических автомобилей. Я буду ссылаться на результаты из этой статьи когда буду делать предположения об электрических автомобилях на топливных элементах (fuel cell electric vehicle, FCEV). Я буду делать аналогичные допущения и использовать похожие источники.

Дисклеймер: я упомянут в нескольких патентах компании Texaco о получении водорода из природного газа для подачи на протонообменную мембрану (ПОМ, ПЭМ) топливных элементов (теперь патенты принадлежат Chevron, которая поглотила Texaco). Я занимался водородом еще с институтских времен, и примерно каждый второй проект на протяжении десятилетий, которые я провел в компании Zeton, включал в себя водород или синтез-газ.

Однако, еще раз хочу четко сказать: водород это прекрасная идея — в теории. Но большая проблема с водородом заключается. в самой молекуле водорода. Никакие изобретения или технологии не решат эту проблему.

Давайте разбирать цепочку эффективности электрического транспорта на водородных топливных элементах этап за этапом, также как мы делали с двигателем внутреннего сгорания и электрическими машинами на аккумуляторах (battery electric vehicle, BEV).

Производство водорода

КПД самого производства водорода — примерно 70%, в лучшем случае, к сожалению. Я недавно [статья 2017 года — прим. перев.] разговаривал с Hydrogenics, большим производителем щелочных и ПЭМ-электролизеров. Эффективность их более дешевых щелочных электролизеров — примерно 60%, а эффективность ПЭМ-электролизеров — 70%, когда он работает на минимальном токе. (Вы можете делать гораздо больше водорода на этом же приборе просто увеличив ток, но жертвуя эффективностью.) Это достаточно близко к теоретическому пределу эффективности электролиза — ~83%, которая получается, если поделить низшую теплоту сгорания (HTC) получаемого водорода на энергию затрачиваемую на электролиз. Мы не вернем эту потерю в топливном элементе потому что мы не используем теплоту конденсации водяного пара.

Большинство производителей электролизеров указывают КПД в расчете на высшую теплоту сгорания (ВТС), то есть включая теплоту конденсации пара. В этом случае 70% (НТС) КПД электролизеров превращаются в примерно 83% (ВТС).

Проблема электролиза в том, что часть энергии очевидно идет на создание молекул кислорода. Это может быть полезно в больших системах, которые могут собирать и сжимать чистый кислород (который затем можно продавать), либо если водород используется не как топливо, а как сырье в технологическом процессе, и этот процесс также использует кислород. К сожалению, водородная заправка не будет использовать кислород, она будет просто выпускать его в воздух.

Поэтому давайте остановимся на 70% (НТС) КПД конвертации электричества в водород, предположительно, электричества от возобновляемых источников (ВИЭ). Если совсем строго, мы еще должны учесть 6% потерь в электросети от источника электричества до электролизера.

70% КПД электролиза почти совпадает с наивысшей доступной на данный момент эффективностью технологии получения водорода из природного газа, парового риформинга (паровой конверсии) метана (steam methane reforming, SMR). Большие установки повышают эффективность, утилизируя теплоту продуктов процесса и сжигая побочные газы после очистки водорода.

Максимально чистый водород нужен, чтобы увеличить эффективность и долговечность топливных элементов. Они очень чувствительны к угарному газу, который уменьшает эффективность платинового катализатора в топливном элементе (то есть, является каталитическим ядом). К сожалению, невозможно конвертировать углеводороды в водород, не получив на выходе также какое-то количество угарного газа. Более того, сам катализатор может преобразовать углекислый газ в угарный газ, поэтому водородное топливо должно быть полностью очищено от обоих газов. Даже инертные газы, такие как аргон и азот, уменьшают эффективность ПЭМ-топливного элемента, потому что надо позаботиться об их выводе на аноде. Поэтому реальные топливные элементы требуют очень чистый водород: посмотрите на спецификации ПЭМ-топливных элементов производства Ballard, Plug Power, и других.

К сожалению, эффективность паровой конверсии метана стремительно падает с уменьшением установки. Тепловые потери увеличиваются, что имеет особенно большое значение в таком высокотемпературном процессе как паровая конверсия. Вы быстро обнаружите это когда попробуете спроектировать процесс для относительно небольшой водородной заправки.

Доставка природного газа по трубопроводам к установке по паровой конверсии в водород и последующая доставка водорода от централизованной установки к заправкам скорее всего будет стоить больше чем 6% от энергии конечного водорода, но давайте будем щедрыми и примем эти потери тоже за 6% чтобы делать меньше подсчетов (хотя, в конечном счете, это все равно будет неважно). Таким образом, вне зависимости от того, начинаем мы с электричества или с метана, мы приходим к 70%*94% ~= 66% КПД производства водорода, без существенных возможностей для улучшения потому что мы уже близки к термодинамическим пределам.

Стоит отметить что КПД электролиза горячего пара может казаться очень высоким (даже выше 100%), например, при использовании твердооксидного топливного элемента в реверсе. Естественно, при этом не учитывается работа по испарению воды и нагреву пара. Никто не использует электролиз пара если у него нет а) источника «бесплатного» пара и б) процесса в котором используется горячий водород или горячий кислород или желательно оба газа. Кроме того, как всякие высокотемпературные устройства, паровые электролизеры «не любят» работать с перерывами, поэтому вам также нужен стабильный круглосуточный источник электричества, а возобновляемые источники — не стабильные.

Хранение водорода

Теперь нам надо хранить водород, и загвоздка опять в самой молекуле. Хотя плотность энергии водорода на единицу массы очень большая, даже в форме криогенной жидкости (при температуре 24 выше абсолютного нуля) водород имеет плотность всего 71 кг/м3. Поэтому единственная практичная на данный момент форма хранения водорода для небольших машин — это газ высокого давления. Любые способы увеличения объемной плотности хранения водорода или уменьшения давления (например, гидриды металлов, абсорбенты, органические носители, и т. д.) или сильно увеличивают массу бака, или увеличивают потери водорода во время хранения, или требуют энергии для извлечения водорода. Я бы не рассчитывал на некий магический прорыв в этой области: у нас было тридцать лет на исследования с того момента, как водород стал всерьез рассматриваться как топливо.

Про опасность водорода хорошо известно, и в моей статье не будет картинки с дирижаблем «Гинденбург»! На самом деле, уже достаточно давно научились безопасно обращаться с водородом в промышленности если использовать разные меры предосторожности. Но я не хочу, чтобы мои соседи даже думали о производстве водорода под давлением 400 или 600 атмосфер с помощью своих домашних солнечных панелей. Это кажется мне кошмарной идеей по многим причинам.

Чтобы сжать водород с давления ~20 атмосфер на выходе с установки по паровой конверсии из метана или с примерно атмосферного давления (на выходе из некоторых электролизеров) до 400 атмосфер надо потратить энергию, обычно электричество. К сожалению, мы вынуждены рассеивать тепло от сжатия водорода на достаточно низкой температуре чтобы сберечь элементы компрессора, и поэтому это тепло трудно как-то использовать. Более того, давление в баке на заправке может снизиться с 400 атмосфер только до 395 во время заправки одной машины, поэтому вся работа по сжатию делается при самом высоком коэффициенте сжатия [я не понимаю, что тут сказано — прим. перев.]. Бак на заправке должен быть очень большим. В противном случае, требования заправляющего компрессора или ограничения по переносу тепла могут уменьшить скорость заправки (ведь мы помним, что скорость заправки — чуть ли не главная причина, по которой нам интересен водород в качестве топлива для транспорта!).

На большом масштабе, с гигантскими компрессорными агрегатами, можно хранить водород под большим давлением теряя не больше 10% от теплоты сгорания (НТС) хранимого водорода на работу компрессоров, что, на самом деле, удивительно хорошо, учитывая вышесказанное. (Заметим, что политропный КПД самих компрессоров — это лишь малая часть этих потерь. Мы смотрим на другую меру эффективности.) К сожалению, когда мы уменьшаем размер компрессоров, эффективность улетает вниз. Многоступенчатый диафрагменный компрессор для автомобиля может потреблять до половины энергии сжимаемого водорода или даже больше. При уменьшении масштаба также растут капитальные расходы в расчете на единицу энергии проходящей через установку на протяжении ее жизненного цикла. Прискорбно, что транспортировка водорода на большие расстояния нереалистична по той же причине, по которой его тяжело хранить — свойства молекулы. [Тут автор не развивает мысль почему транспортировка водорода на большие расстояния нереалистична, но в другой статье он пишет, что доставка водорода по трубопроводам требует в три раза больше энергии, чем доставка природного газа, на единицу переносимой энергии — прим. перев.] Все мечты о «водородной экономике» предполагают малые и распределенные системы производства водорода, так что мы не должны гонять водород с места на место, что оставляет нам только один реалистичный вариант: электролиз.

Таким образом, у нас остается 70% (производство) * 94% (потери в электросети или на работу трубопровода) * 90% (хранение под высоким давлением) = 59% КПД от исходной энергии до бака автомобиля. Для сравнения, для бензина этот показатель — 80%. Конечно, мы не будем использовать водород в неэффективном двигателе внутреннего сгорания как замену бензину, особенно если водород получен из углеводородов: мы бы лучше просто сжигали эти углеводороды в ДВС напрямую.

Если нас заботят выхлопы парниковых газов, производство водорода из метана точно не решает проблему [см. недавнюю статью «Насколько чист «голубой» водород?» на эту тему — прим. перев.]. Мы бы лучше просто ездили на Приусах. Электролиз с использованием электричества из возобновляемых источников — это единственный возможный вариант.

Читать статью  Организация находится на ОСНО. Генеральный директор использует личный автомобиль для работы. Он планирует приобрести топливные карты и оплачивать бензин за счет компании. Нужны ли будут в данном случае путевые листы? Как это отражается в бухгалтерском и налоговом учете?

Топливный элемент с протонообменной мембраной

Печально, но мы все еще не закончили терять энергию — далее идут потери в топливном элементе. Хотя это и не тепловой двигатель, топливный элемент все равно имеет собственные термодинамические пределы. Топливные элементы достигают эффективности в 50–60%, и это недалеко от теоретического предела в 83% для идеального топливного элемента.

Давайте будем щедрыми и возьмем 60% как КПД топливного элемента. Реальные ТЭ которые можно купить имеют эффективность около 50% — лучше, чем у небольшого двигателя, примерно так же, как у судовых двигателей или стационарных скоростных двигателей, или у газовых турбин.

Вся цепочка, от источника энергии до колес

Учитывая эффективность электрического инвертора и мотора (90%), общая эффективность «от электростанции до колес» — 94%*70%*90%*60%*90% = 32%. Напомню, что по показателю «от скважины до колес», Приус достиг эффективности 30% на бензине, то есть мы «сделали» Приус, и это без вредных выхлопов. И с быстрой заправкой. Ура! Ура.

Мой самодельный электрический автомобиль, «E-Fire», имеет эффективность 76.5%. и тоже не дает никаких выхлопов. [Источник этой оценки неясен: если автор берет такие же потери в инверторе, моторе, и электросети, его батарея должна иметь КПД 90%. — прим. перев.] несмотря на очень маленькую батарею по нынешним стандартам, всего 18.5 кВч, этого хватает на мою дорогу до работы и обратно. Я уже проехал на этой машине 20 тыс. км. без парниковых выхлопов, и я никогда не ждал ее зарядки: я заряжаю ее один раз ночью, и один раз утром на работе. Эта машина не делает всего того, что делает машина с ДВС, не пытается, и не должна этого делать.

Капитальные затраты на водородный стек

Таким образом, электромобили на топливных элементах (FCEV) в лучшем случае примерно в 2.4 раза хуже чем лучшая доступная сейчас альтернативная технология, электромобили на аккумуляторах (BEV). Взамен мы получаем более быструю заправку и, возможно, немного большую дальность хода на одной заправке, и это все. Не слишком ли высока цена за немного большее удобство? Хотя, подождите, мы ведь даже не начали говорить о цене.

Водород это очень дорогое топливо, с любой точки зрения.

В 2.4 раза худшая эффективность транспорта на топливных элементах означает что мы должны установить в 2.4 раза больше генерирующих мощностей из возобновляемых источников. Сам по себе этот факт должен заставить сторонников водорода задуматься.

Мы также должны построить инфраструктуру по распределению водорода. Вы не будете заправляться водородом дома, это слишком огнеопасно. Это значит что кто-то должен заняться этой инфраструктурой как бизнесом, но никто не захочет это делать потому что на этом не получится заработать.

Наконец, давайте посмотрим на сам электромобиль на ТЭ. В нем, конечно, должен быть бак для водорода и топливные элементы. А также все остальные части обычных электромобилей, включая аккумулятор! Аккумулятор будет меньше, ближе по размеру к аккумуляторам в гибридах, но он все равно нужен чтобы было куда девать энергию от рекуперативного торможения, чтобы управлять потребностями в системе топливных элементов чтобы уменьшить ее стоимость. Батарея также нужна во время старта и выключения топливных элементов. Таким образом, электромобиль на ТЭ — это гибрид.

В дополнение ко всему вышесказанному, сами топливные элементы по-прежнему очень дороги. Хотя цены однозначно снизятся с началом массового использования и производства, также как сейчас снижаются цены на литий-ионные аккумуляторы, металлы платиновой группы (МПГ), такие как платина и палладий, используемые в катализаторах топливных элементов, не позволят ценам упасть слишком сильно. Уменьшите долю МПГ, и топливные элементы станут еще более чувствительными к примесям в водороде, и, я подозреваю, эффективность упадет. Замените МПГ на более дешевые металлы, такие как никель, и большая часть преимуществ топливных элементов пропадет: они должны будут работать при более высоких температурах, и т. д.

Toyota Mirai, электромобиль на топливных элементах

Toyota Mirai, электромобиль на топливных элементах

Означает ли это, что водород — это мертвая идея для персональных электромобилей? Одним словом, на мой взгляд, ДА. Я полностью согласен с Илоном Маском в этом вопросе. Разве что, уточнив, что мы говорим не о мире в котором электричество ничего не стоит, или его цена даже становится отрицательной потому что генерация из возобновляемых источников становится такой дешевой что не требует вообще никаких денежных вложений. Но я готов поспорить, что а) этого никогда не произойдет, б) даже если мы приблизимся к этой странной экономической ситуации, капитальные затраты и другие практические проблемы с электролизерами, компрессорами, резервуарами для хранения и топливными элементами все равно полностью убьют идею.

Сравнение двух реальных автомобилей которые можно купить (по крайней мере, в Калифорнии) показывает, что мои оценки оптимистичны в пользу водорода. Для автомобилей с аналогичными характеристиками и дальностью хода, водородный автомобиль потребляет в 3.2 раза больше энергии и стоит в 5.4 раза больше в расчете на проеханный километр:

Конечно, обе технологии будут улучшены в будущем, но расчеты выше по тексту задают пределы. Невозможно преодолеть законы термодинамики неким хитрым изобретением или принимая желаемое за действительное.

Означает ли все это, что топливные элементы вообще не нужны? Вовсе нет! Существуют устоявшиеся области в которых ПЭМ-топливные элементы имеют смысл, но это лишь те ситуации, где энергоэффективность гораздо менее важна, чем, например, быстрая заправка. Таким образом, Plug Power находит свою нишу на рынке складских вилочных погрузчиков, особенно на охлаждаемых складах.

Вилочный погрузчик на топливных элементах

Вилочный погрузчик на топливных элементах

То же самое относится к так называемым «power to gas» (P2G) схемам. Это совсем другая модель: они используют «избыточную» возобновляемую электроэнергию для производства водорода, который затем под низким давлением подмешивается в газовую сеть, где в конечном итоге используется для производства тепла, часто в устройствах, которые в конечном итоге рекуперируют тепло конденсации водяного пара (продукта горения водорода). Как средство хранения электроэнергии схемы P2G настолько смехотворно неэффективны, что о них даже не стоит говорить, но зато они требуют лишь небольших капитальных вложений и сокращают выбросы парниковых газов, когда водород вытесняет метан. Это не так уж и плохо, если только вы не сделаете вывод, что однажды мы ПОЛНОСТЬЮ заменим природный газ водородом. Это будет очень глупо.

Другие применения водорода на транспорте

На данный момент, в некоторых видах транспорта: самолеты, поезда, суда, аккумуляторы практически или совсем неприменимы. Главный вопрос в этих случаях стоит так: насколько мы заботимся о токсичных выбросах? Если они волнуют нас больше всего, водород — единственные решение. Но если мы больше думаем о парниковом эффекте, мы также можем использовать биотопливо как альтернативу водороду. [При сжигании биотоплива в воздух попадает углекислый газ, но этот углерод был извлечен из атмосферы самими растениями в течение предыдущего года, поэтому общий атмосферный баланс не нарушается — прим. перев.] Для самолетов биотопливо, скорее всего, — это единственное практическое решение до тех пор пока мы не изобретем что-то с гораздо большей плотностью энергии, чем литий-ионные аккумуляторы, возможно, перезаряжаемые металл-воздушные аккумуляторы. И хотя мы не сможем полностью заменить бензин и дизель на биотопливо, даже если полностью забудем об экономике (цифры по этому поводу см. на сайте www.withouthotair.com), если мы покроем 90% перевозок (в километрах, или тоннокилометрах) электричеством, мы можем производить достаточно биотоплива чтобы покрыть оставшиеся 10%, ПЛЮС все те другие виды транспорта, в которых в сейчас невозможно использовать аккумуляторы. Гораздо важнее избавиться от токсичных выхлопов в городах, чем на трассах, в море, или высоко над землей.

Очевидно, что использование водорода или электрохимии для уменьшения выбросов CO2 с целью получения жидких углеводородов значительно менее эффективно, чем сам водород [я не понимаю, что тут сказано — прим. перев.]. То же самое и с аммиаком, который кажется кому-то способом преодолеть некоторые недостатки водорода. Аммиак — ядовитый газ, и, опять же, производить его менее эффективно, чем водород. Мысль о заправке автомобилей аммиаком повергает меня в ужас, учитывая количество смертей, связанных с аммиаком в результате его использования в качестве хладагента и в сельском хозяйстве.

Так называемое «e-топливо» (e-fuel, power-to-liquid) — это, на самом деле, производная водородного топлива. Оно делается из углекислого газа, воды (продукт горения водорода), и электричества. При реверсе термодинамического процесса неизбежны потери. С учетом того, что потом мы используем это топливо в неэффективном ДВС, вся схема получается очень очень неэффективной.

Е-топливо — это способ использовать еще больше излишков энергии в тщетных попытках превратить водород в более эффективное (удобное) топливо. К сожалению, если мы не сможем производить достаточно биотоплива для того транспорта, в котором мы не можем использовать аккумуляторы, нам, возможно, придется сначала использовать топливные элементы, и только в самом крайнем случае — е-топливо. И мы будем горько плакать, глядя на его стоимость.

Настоящее будущее «зеленого» водорода

Сейчас более 96% водорода производится из ископаемого топлива либо целенаправленно (паровая или автотермальная конверсия метана), либо как побочный продукт при производстве нефти. Мы должны научиться производить водород очень эффективно из возобновляемого электричества, но не тратить его как автомобильное топливо, а использовать при производстве удобрений: аммиака и мочевины. Нам придется избавиться от гигантской инфраструктуры по производству и доставке углеводородов.

Дисклеймер [от автора статьи, не переводчика]: все что я пишу в своих статьях — это мое личное мнение. Я пытаюсь всегда приводить ссылки на источники, когда могу. Скорее всего, в моих цифрах и рассуждениях есть ошибки. Я заранее извиняюсь за них. Если вы можете указать мне на них со ссылкой на хороший источник, я отвечу и исправлю текст. Мой работодатель, Zeton Inc., работает в совсем другой области, и не имеет ни интереса, ни даже позиции по поводу водорода. Мы проектируем и строим пилотные установки.

Водород в автомобилях: Опасности и сложности использования

Плюсы и минусы использования водорода в качестве автомобильного топлива

Водород в автомобилях: Опасности и сложности использования

Начало 21-го века, как и само начало XX века, также считается временем перемен. Вновь перед населением нашей Планеты замаячила технологическая революция и вновь главное место в ней занимают, как и всегда — автомобили. Как и сто лет назад быстрыми темпами начали развиваться альтернативные виды транспорта, не связанные с привычными нам двигателями внутреннего сгорания. Все чаще можно увидеть на дорогах мира автомобили гибриды, которые приводятся в движение электродвигателем и ДВС. В развитых странах Мира и Европы все чаще входят в обиход электрокары. Совсем еще недавно, каких-то 7 — 10 лет назад, ученные и инженеры пророчили таким машинам с ДВС большое будущее, работающим на самом распространенном элементе в нашей вселенной — водороде. Все это человечество уже проходило в начале прошлого столетия. А потому, заново и вновь подтверждает свою актуальность распространенное по всему белу свету изречение: «Все новое — это хорошо забытое старое».

Сейчас наша Планета переживает новый кризис,- нефтяной. Только связан он не с дефицитом черного золота ставшего на 100 лет локомотивом развития всего человечества, а с перенасыщенностью данного вида товара на рынке. Это быть может и есть тот первый сигнал говорящий нам о том, что «нефтяной век» подходит к своему концу. Как говорят, — каменный век закончился не потому что закончились камни. Поэтому нам так важно сегодня развивать запасной план (запасной источник знергии, для авто в том числе) на случай, если…

21 век в автомобильном мире будет веком распространения технологий будущего. Но не всем новым технологиям суждено выиграть в этом естественном отборе.

И так, приступим. Менее десяти лет назад единственной реальной альтернативой ископаемым видам топлива был по сути водород. Прошли годы, а никаких серьезных подвижек в этом направлении так сделано и не было. Наоборот, аутсайдер того времени то есть электрокар, из пешек, перешел в дамки, с появлением автомобиля Tesla и разработкой очень надежных и прогрессивных аккумуляторов, из которых всем стало ясно, что электрические автомобили — это всерьез и надолго.

Читать статью  Бензин 92 или 95

Почему так получилось? Ведь водородный ДВС был практически идеальным способом приводить в движение автомобиль. Он не требовал больших вложений в разработку нового агрегата (водород может использоваться в качестве топлива в обычном двигателе внутреннего сгорания). По данным статистики, в случае использования водородного топлива мощность мотора упадет с 82 — до 65%, по сравнению с обычным бензиновым мотором. Но внеся небольшие изменения в саму систему зажигания, мощность того же двигателя сразу увеличится до 118%.

Первый плюс ДВС работающего на водороде: -необходимы минимальные изменения в конструкции двигателя для того, чтобы мотор перевести на новый вид топлива

Экологичность такого вида топлива тоже не подвергается сомнениям. Последняя серийная разработка японской автомобилестроительной корпорации «Toyota» доказала, что «выхлоп» водородного автомобиля можно…по-просту пить. Это лмчно продемонстрировал один зарубежный автожурналист. Он сделал несколько глотков воды поступающей прямо из выхлопной трубы автомобиля Toyota Mirai, и тут-же сказал, что на вкус данная вода вполне себе даже ничего, настоящая дистиллированная, без примесей.

Второй плюс этих ДВС — экологичность. Никакого загрязнения окружающей среды вредными выбросами в атмосферу. Значит, сведение к минимуму этих парниковых газов и спасение нашей прекрасной Планеты. Вот к чему может привести использование этого вида топлива.

Следующий фактор о водородных двигателях (его косвенно можно считать таковым). Исторически так уж сложилось, что водородом заправляли еще «автопионеров» среди ДВС. Первый такой водородный двигатель был построен французским конструктором Франсуа Исаак де Ривазом аж в 1806 году.

Не забудем и те героические времена истории Нашей с вами страны. В блокадном Ленинграде на водород было переведено более 500 автомобилей. И они без особых проблем несли свою непростую но нужную службу.

Получается, что водород, как топливо для сжигания в ДВС, используют уже достаточно давно. Значит и особых проблем в создании современного автомобиля не должно просто быть.

Четвертый значительный фактор говорящий за целесообразность использования вещества с формулой H2- это его колоссальная распространенность на планете. H2 (водород) можно получать даже из отходов и сточных вод.

Часто встречающиеся в природе вещества достаточно дешево стоят. Значит и водородное топливо не должно быть дорогим.

Пятый фактор. — Водород может использоваться не только в ДВС. Технологии также позволяют применять его в так называемом «топливном элементе».

Топливный элемент отделяет один электрон в атоме водорода от одного протона и использует электроны для получения электрического тока. Это электричество способно питать двигатель в электрокаре. В самих топливных элементах также не используется ископаемое топливо, поэтому таковые (топливные элементы) по-просту не загрязняют окружающую среду. И главное достоинство — они безопасны, водород не может сам по себе самопроизвольно испарится из них. Казалось бы, просто идеальный преемник двигателю внутреннего сгорания в качестве источника энергии для автомобилей 21-го века.

Использование водорода может происходить в различных силовых установках, делая его таким образом более гибким к развитию технологий. Разрабатываемые современные водородные автомобили в основном используют эту данную схему, как наиболее безопасную и продуктивную.

Не мало плюсов, неправда ли друзья? И они все очень даже весомые. Но почему тогда до сих пор мы не видим миллионы водородных самодвижущихся экипажей вокруг нас по всей планете? На то есть свои определенные причины, и они также очень сегодня важны.

Давайте рассмотрим некоторые из причин, в том числе серьезные опасности, которые могут быть связаны с водородной энергетикой.

Первый минус. -Да, это правда, водород самый распространенный элемент во всей Вселенной, однако на самой Земле в чистом виде газообразный водород найти сегодня практически невозможно. Этот газ необычайно легок. Поэтому в чистом виде он очень быстро (почти моментально) поднимается к верхним слоям атмосферы и уходит дальше в безвоздушное пространство.

В подавляющем большинстве случаев атомы водорода связаны с другими типами атомов в разнообразные молекулы, которые образуют после этого различные вещества. Вот например, H2O, более известная нам всем, как вода, или тот же СН4, также известный, как метан, оба эти элемента содержат в себе молекулы водорода.

Поэтому получается, прежде чем водород может быть использован в качестве альтернативного топлива, он сначала должен быть извлечен из этих самых веществ, а затем уже переведен в особое состояние, то есть как правило, в тот самый сжиженный и необходимый нам вид.

На все эти действия потребуются очень большие затраты энергии, а значит и коллосальные материальные средства. К примеру, для извлечения H2 (водорода) из воды с помощью электролиза требуется большое количество электроэнергии, что на данный момент просто нерентабельно. По разным подсчетам стоимость 1 литра сжиженного водорода составляет примерно от $2 долларов и до 8 Евро, в зависимости от способа его добычи.

Следующим звеном в цепочке под номером два идет: -отсутствие развитой структурной сети самих водородных заправок. Стоимость оборудования для таких заправочных станций в разы выше, чем у обычной АЗС. Существует различные проекты для водородозаправляющих станций, как от классических АЗС, так и до частных минизаправок. При сегодняшнем развитии смежных технологий все эти проекты чрезвычайно дороги и относительно опасны.

Развитие сети водородных заправок дело будущих десятилетий. Именно столько должно пройти времени, чтобы стоимость их постройки была целесообразной.

Существуют ли опасности, которые связаны с наличием большого количества чистого водорода скопившегося в одном месте? Безусловно существует. Когда жидкий водород хранится в резервуарах, это безопасно, но стоит ему просочится в окружающую среду, как он моментально превращается в гремучую смесь (гремучий газ).

В плюсах мы уже отметили, что водородом можно заправлять автомобили с обычным двигателем внутреннего сгорания (в домашних условиях не повторять! ОПАСНО. ), но однако, этот обычный двигатель проработает на чистом водороде не долго. Он быстро сломается. При сгорании водородной смеси выделяется большее количество тепла, чем при сгорании того же бензина, а это может привести под высокими нагрузками к перегреву клапанов и поршней двигателя. Помимо этого ,под воздействием высоких температур H2 (водород) может влиять на саму смазку в двигателе и на материалы из которых сделан мотор, что непременно приведет к повышенному износу рабочих частей агрегата.

Отсюда мы делаем неутешительный вывод: -без очень дорогостоящей модернизации ДВС, которая должна приспособить мотор к работе на этом виде горючего, использование водорода как топлива не приведет к ожидаемому результату.

А пока все построенные объекты для заправки автомобилей водородом скорее всего используются в качестве рекламного хода и для демонстрации возможностей будущего.

Топливные ячейки стоят на третьей позиции в качестве минусов. Эти вроде безопасные элементы тоже не избежали тернистого пути метода проб и ошибок. Как и с теми же заправочными станциями и с теми же двигателями ДВС, все упирается именно в стоимость применяемых на данный момент технологий.

Приведем один пример. В качестве катализатора в этих топливных элементах используется на данный момент платина. А теперь представляете друзья стоимость такой детали?!

Некоторые технологии для ДВС настолько дороги, что проще купить жене платиновое кольцо с бриллиантом, чем заменить сломавшуюся деталь в водородном автомобиле.

Хорошая новость в этом достаточно дорогом деле заключается в том, что ученные непрерывно день-изо-дня ищут замену этому драгоценному металлу. Разрабатываются все новые технологии, проходят тестирования новые современные материалы. В конечном итоге ученые надеются, что «топливные элементы будущего» могут существенно снизить себестоимость сегодняшних элементов в 1000 раз и более.

И наконец последними, возглавляющими наш список минусов водородных технологий являются: — смертельные опасности, связанные с жидким и газообразным водородом.

Возглавляет окончательный список проблем — само возгорание водорода. В присутствии окислителя, т.е. кислорода, водород может сам по-себе просто загореться. Иногда такое возгорание происходит в виде взрыва. Согласно проведенным исследованиям было установлено, что для воспламенения водорода достаточно всего одной 10(десятой) частички энергии, что требуется для воспламенения бензина. Проще говоря можно сказать, что достаточно всего маленькой искры от статического электричества, чтобы этот гремучий газ вспыхнул.

Еще одна проблема кроется в том, что это пламя водорода почти невидимо. При возгорании водорода пламя настолько тускло, что с ним не так-то просто бороться (справиться).

А вот друзья еще одно летальное свойство водорода: -он может привести к удушью. H2 конечно не ядовит, но, если вы начнете дышать чистым водородом, то можете просто задохнуться и все потому, что будете просто-напросто лишены обычного кислорода. И хуже того, распознать, что концентрация водорода в воздухе очень высока просто невозможно, так как он совсем невидим и не имеет запаха, так же как и сам кислород.

И наконец последняя причина. Как и любой сжиженный газ водород имеет очень низкую температуру. При утечке из бака и непосредственным контактом с открытыми участками тела человека, он может привести к серьезному обморожению.

Действительно ли водород на столько опасен?

Наверное, после всего прочитанного Вы будете уважаемые читатели просто в шоке, что водород на столько опасен. И возможно никогда не захочете покупать себе водородный автомобиль, если в будущем у вас появится такая возможность(?).

На самом деле не все так уж и плохо. Поскольку газообразный водород чрезвычайно легок, то при утечке он быстро рассеется в самой атмосфере. Тогда ни какой гремучей смеси не получится и опасность взрыва будет сведена к минимуму.

Что касается опасности удушья, то мы ответим вам так: –такая проблема может случиться только в замкнутом пространстве, например в гараже. Если же утечка водорода произойдет на открытом воздухе, то его концентрация будет незначительной и небольшой, опасности для жизни она не представляет.

Почему водородные автомобили проигрывают электромобилям?

Водород (H2) – это химический элемент, самый легкий газ получаемый из углеводородов, биомассы, мусора. Водород используют в нефтепереработке для гидроочистки, гидрокрекинга, для производства аммиака, при гидрогенизации угля, нефти и как альтернативный источник топлива (электроэнергии) для автомобилей. В автомобили ставят топливные элементы вместо бензобака, и заправляют туда H2 под давлением. При нажатии на педаль газа, в воздухозаборник поступает кислород, который вступает в реакцию с водородным элементом, отчего вырабатывается электричество. Электричество раскручивает электромотор, автомобиль начинает движение.

Преимущества и недостатки h2

H2 как альтернативное топливо

Чем интересен водород, как альтернативный источник топлива:

  • нулевые выбросы в атмосферу;
  • потенциал для внутреннего производства в странах, где нет нефтяных запасов;
  • быстрая заправка автомобилей (3-5 минут);
  • по расходу и цене, топливные элементы до 80 % эффективнее бензина;
  • электродвигатель питающийся от водородного топливного элемента, в два-три раза быстрее и экономичнее, чем двигатель внутреннего сгорания.

Преимущества водородных автомобилей над электромобилями:

  • скорость зарядки;
  • от полностью заправленного водородом топливного элемента на выходе электроэнергии больше, чем от полностью заряженной АКБ электромобиля. Т.е. машина на полностью заряженном водородном топливном элементе (FCEV-fuel cell electric vehicle) преодолеет большее расстояние, чем такой же электромобиль с полностью заряженной батареей.

Модели автомобилей на водородеавтомобили на водороде

Автопарк автомобилей на водороде к концу 2019 года превысил 25 тыс. машин, причем свыше 12 тыс. было продано за 2019 год. В основном парк расширяется в Китае, Японии, Республике Корея, хотя лидером по количеству водородных автомобилей остаются США.
Модели на водороде собирают Toyota, GM, Honda, Hyundai, Mercedes-Benz и продают в регионах с развитой сетью водородных заправок. Цена машин в районе 4-6 миллионов рублей — Toyota Mirai – 4 млн. руб., Honda FCX Clarity – 4 млн. руб.

Выпускают ограниченной серией:

  • Audi A7 h-tron quattro – электро-водородный гибридный легковой автомобиль.
  • Hyundai Tucson FCEV
  • Ford E-450.
  • Городские автобусы MAN Lion City Bus.
Читать статью  Бензин 100 Лукойл, что это и для каких авто предназначен?

Испытывают:

  • Ford Motor Company – Focus FCV;
  • Honda – Honda FCX;
  • Hyundai Nexo
  • Nissan – X-TRAIL FCV (топливные элементы компании UTC Power);
  • Toyota – Toyota Highlander FCHV
  • Volkswagen – space up!;
  • General Motors;
  • Daimler AG – Mercedes-Benz A-Class;
  • Daimler AG – Mercedes-Benz Citaro (топливные элементы компании Ballard Power Systems);
  • Toyota – FCHV-BUS;
  • Thor Industries – (топливные элементы компании UTC Power);
  • Irisbus – (топливные элементы компании UTC Power).

Ограниченными сериями выпускаются BMW Hydrogen 7 и Mazda RX-8 hydrogen – двухтопливные модели использующие либо жидкий водород, хранящийся в баке при температуре не выше −253 °C, либо бензин. Принцип тот же, что и в автомобилях на газу. В отличие от FCEV двухтопливные модели выпускают вредные выхлопные газы, двигатели не такие мощные и быстрее изнашиваются.
На водородных топливных элементах (FCEV) конструируют спецтехнику: автобусы, погрузочно-разгрузочное оборудование (например, вилочные погрузчики), наземно-вспомогательное оборудование, средние и большие грузовики. Активно в этой сфере работает американская компания Plug Power Inc (PLUG). PLUG выпускает комплектующие для спецтехники на водороде. Недавно PLUG провела симпозиум, на котором заявила:

  • о покупке поставщика технологий, оборудования и услуг для сжиженного водорода Applied Cryo Technologies;
  • о строительстве в Австрии завода по производству литий-ионных аккумуляторов;
  • презентовала прототип фургона HyVia Renault Master Van на водородных топливных элементах.

Honda огласила цель по поэтапному отказу от бензиновых двигателей в Северной Америке к 2040 году.
Daimler Trucks и Volvo стали партнерами в Европе, чтобы попытаться снизить себестоимость FCEV и сделать водород выгодным для дальних перевозок.

Водород и проблемы с экологией

Водород обилен в природе. Он хранится в воде (H2O), углеводородах (метан, CH4) и других органических веществах. Проблема водорода как топлива в эффективности его извлечения.
При извлечении водорода, в зависимости от источника, в атмосферу попадают вредные выбросы. При этом, сам автомобиль работающий на водороде, в качестве выхлопных газов выделяет только водяной пар и теплый воздух, у него нулевой уровень выбросов.

СПОСОБЫ ДОБЫЧИ ВОДОРОДА

  • паровая конверсия метана и природного газа;
  • электролиз воды;
  • газификация угля;
  • пиролиз;
  • частичное окисление;
  • биотехнологии;
  • паровой риформинг метана.

Паровой риформинг метана

Способ отделения водорода путем парового метанового риформинга применим к ископаемому топливу, например, к природному газу – его нагревают и добавляют катализатор. Природный газ не возобновляемый источник энергии, но пока он есть и добывается из недр земли. Министерство энергетики США утверждает, что выбросы автомобилей, работающих на реформированном водороде, вдвое меньше, чем в бензиновых автомобилях. Производство реформированного водорода уже запущено на полную катушку и добывать водород таким способом дешевле, чем водород из других источников.

Газификация биомассы

Водород также добывают из биомассы – сельскохозяйственных отходов, отходов животноводства и сточных вод. Используя процесс называемый газификация, биомассу помещают под воздействие температуры, пара, кислорода, чтобы образовать газ, который после обработки дает чистый водород. «Существуют целые полигоны для сбора сельскохозяйственных отходов – готовые источники водорода, потенциал которых недооценен и тратится впустую», сетует директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов, Джеймс Варнер.

Электролиз

Электролиз – процесс отделение водорода из воды электрическим током. Этот способ звучит проще, чем возня с ископаемым топливом и отходами животноводства, но у него есть недостатки. Электролиз конкурентоспособен в тех районах, где электричество дешевое (в России этом могла бы быть Иркутская область – 8 электростанций на область, 1 рубль 6 копеек за киловатт-час).
Солнечные водородные станции Honda используют энергию солнца и электролиз, чтобы отделить «Н» от «О» в Н2О. После отделения водород хранится в баке под давлением в 34.47 МПа (мегапаскаль). Используя только солнечную энергию, станция создает 5 700 литров водорода в год (этого топлива достаточно для одного автомобиля со средним годовым пробегом). При подключении к электрической сети, станция выдает до 26 тысяч литров в год.

Планы компаний по развитию производства H2

В Токио, недалеко от Токийского залива, построили завод для получения водорода из сточных вод и мусора.
PowerTap планирует построить на водородных АЗС помещения с оборудованием для получения водорода из природного газа и городской воды. Оставшийся углерод будут улавливать, и хранить там же.
Ways2H Inc. огласила планы построить небольшие заводы по переработке водорода возле мусорных свалок. Формула успеха компании Ways2H Inc.: мусор + термохимический процесс = водород. Завод стандартного размера обрабатывает 24 тонны отходов в день, получая от 1 до 1,5 тонны водорода.

Сколько стоит производство водорода

По оценке Международного агентства по возобновляемым источникам энергии IRENA в 2019 году, стоимость 1 кг водорода получаемого за счет ветровой энергии составляла в среднем около 4 $, солнечной – почти 7 $, тогда как «загрязняющее» получение H2 из угля или газа обходится в 1,5–2,5 $. Даже с учетом технологии CCS (carbon capture&storage – технология улавливания, транспортировки и хранения углерода), получение H2 из угля не экологичней ветровой и солнечной энергии. С развитием «солнечных» технологий разница в цене между «чистым» и «грязным» способом добычи водорода исчезнет далеко после 2030 года.

На сколько экономней водородный автомобиль?

В Европе заправка полного бака водорода емкостью в 4.7 килограмма обойдется в 3 369 ₽ (717 ₽ за килограмм). На полном баке Toyota Mirai в среднем проезжает 600 километров, итого 561 ₽ на 100 километров. Для сравнения, цена 95-го бензина в Европе равна 101 ₽, т.е. 10 л. бензина обойдется в 1010 ₽ или 6 060 ₽ за 600 километров [цены на 2018 год.] Из примера видим, что заправка водородного автомобиля в два раза дешевле, чем автомобиля с двигателем внутреннего сгорания.
В России активисты из г. Черноголовки Московской области, ради эксперимента сконструировали собственную водородную станцию, купили Toyota Mirai и посчитали, во сколько обойдется эксплуатация автомобиля. По расчетам владельца машины 100 километров на водороде ему обходится в 250 рублей.

Как заправляют топливные элементы водородом

В 1 килограмме газообразного водорода столько же энергии сколько в 1 галлоне бензина (4,5 литра = 2,8 килограмма). Поскольку в водороде низкая объемная плотность энергии, он хранится в резервуарах высокого давления (топливных элементах) – 5000 или 10000 фунтов на квадратный дюйм (psi) (340 или 680 атмосфер), в виде сжатого газа. Водородные диспенсеры на заправках заполняют такие резервуары за 5 минут. Разрабатываются и другие технологии хранения, включая химическое соединение водорода с металл-гидридом или низкотемпературными сорбционными материалами.

Как работает топливный элемент заполненный водородом

Как работает водородный автомобиль

Прокачивая кислород и водород через катоды и аноды, контактирующие с платиновым катализатором, происходит химическая реакция, в результате которой получается вода и электрический ток. Набор из нескольких элементов (ячеек) необходим, чтобы увеличить заряд в 0,7 вольт в одной ячейке, что увеличивает напряжение.
Ниже смотрите схему работы топливного элемента.

как работает топливный элемент h2

Где заправлять автомобили водородом?

Карта заправочных станций здесь.
Революция FCEV не начнется без достаточного количества водородных АЗС, поэтому отсутствие инфраструктуры водородных заправочных станций по-прежнему тормозит развитие водорода как альтернативного вида топлива Развитие сетей водородных АЗС идет туго.
В Америке самый большой автопарк FCEV моделей, с концентрацией в штате Калифорния. Заправок там достаточно, но начались проблемы с поставкой водорода. Водители повально отказываются от водородных автомобилей, столкнувшись с пустыми заправками. Подробнее здесь.

Расходы на содержание водородных станций

h2 азс

В 2004 году в Европе и США работало 168 000 бензиновых АЗС. Заменить обширную сеть бензозаправочных станций водородными в США обойдется в полтора триллиона $. При этом, к примеру, цена водородной топливной сети в Европе может быть в 5 раз ниже, чем цена заправочной сети для электромобилей (EV). Цена одной EV – станции от 200 000 до 1 500 000 рублей. Цена водородной станции – 3 миллиона долларов. При этом, водородная сеть будет все равно дешевле сети станций для электромобилей по окупаемости. Причина в быстрой заправке водородных автомобилей (от 3 до 5 минут). На миллион автомобилей на топливных водородных элементах требуется меньше водородных станций, чем зарядных станций на миллион электромобилей.

Снижение стоимости водородных технологий за счет прогресса

Еще одно препятствие для производителей автомобилей на водородном топливе – цена водородных технологий. Например, набор топливных элементов для автомобилей до настоящего момента, опирается на платину в качестве катализатора. Покупали когда-нибудь колечко из платины для любимой? Цена Вам известна.
Ученые из Лос-Аламосской национальной лаборатории доказали, что замена дорогой платины на более распространенные – железо или кобальт, в качестве катализатора возможна. А ученые из Case Western Reserve University разработали катализатор из углеродных нанотрубок, которые в 650 раз дешевле, чем платина. Замена платины, заметно снизит себестоимость топливных элементов. Параллельно ученые пытаются снизить себестоимость производства аккумуляторов для электромобилей, подробней здесь.
На этом исследования по совершенствованию водородного топливного элемента не заканчиваются. Mercedes разрабатывает технологию сжатия водорода до давления в 68.95 МПа (мегапаскаль), чтобы эффективней заправлять топливный элемент большим количеством H2. В связке с передовым литий-ионным аккумулятором как дополнительным хранилищем энергии, это увеличит количество энергии на борту автомобиля. «Если все получится, у автомобилей на водороде диапазон движения превысит 1000 км.» считает доктор Герберт Колер, вице-президент Daimler AG.

Министерство энергетики США утверждает, что себестоимость сборки автомобилей с топливным элементом снижены на 30 % за последние три года и на 80 % за последнее десятилетие. Срок службы топливных элементов увеличился вдвое, но этого недостаточно. Для конкурентоспособности с электромобилями срок службы топливных элементов нужно увеличить еще в два раза. Нынешние водородные топливные элементы, «живут» около 2 500 часов (или примерно 120 000 км), но этого мало. «Чтобы конкурировать с другими технологиями, нужно продлить их жизнь до 5 000 часов, как минимум», говорит один из членов ученого совета министерской программы по топливным элементам.

Развитие технологий водородных топливных элементов снизит себестоимость производство автомобилей за счет упрощения механизмов и систем, но выгоду производители получат только при серийном выпуске. Препятствием на пути к массовому выпуску автомобилей на водороде, стоит отсутствие оптовых поставок запчастей для автомобилей с водородным топливным элементом. Даже автомобиль FCX Clarity, который уже выпускается серией, не обеспечен дополнительными запчастями по оптовым ценам. Автопроизводители решают проблему по-своему, устанавливают топливные элементы водорода в дорогие модели для обкатки. Дорогие автомобили выпускаются в меньшем количестве, чем бюджетные, поэтому и проблем с поставкой запчастей к ним нет. «Мы внедряем «водородную технологию» в люксовые автомобили и следим, как она себя показывают «в народе». Пока рынок принимает водородные автомобили, как лет 10 назад принимал технологию гибридов, автопроизводители в это время наращивают объемы водородных моделей, спускаясь по цепочке к бюджетным авто», говорит Стив Эллис, менеджер по продажам автомобилей с топливным элементом компании Honda.

В 2005 году канадский производитель протон-обменных топливных элементов, обещал, что к 2010 году будет продавать автокомпаниям от 200 000 до 500 000 топливных элементов в год. Цель так и не была достигнута, топливные элементы в таком количестве заводам были не нужны.

В 2009 году несколько производителей автомобилей подписали совместное письмо о намерениях к 2014 году продавать сотни тысяч автомобилей с водородным двигателем. Этого тоже не произошло.

Получит ли «водородная программа» поддержку государства

Производители автомобилей и строители заправочных сетей сходятся во мнении, что снизить затраты в краткосрочной перспективе без вмешательства со стороны государства не выйдет. Что в США, однако, представляется маловероятным, при всех описанных денежных вливаниях местной администрации Штатов и Министерств.

С министром энергетики Стивеном Чу, администрация Обамы не раз пыталась сократить финансирование программы развития водородных топливных элементов, но сокращения отменял конгресс.

Популярность электрических автомобилей сторонникам водорода кажется абсурдной. «Это взаимодополняющие технологии», говорит Стив Эллис, представитель Honda. Аккумулятор, разработанный для Honda FCX, например, устанавливают и на электромобиль Fit. «Считаем, что водородные топливные элементы в сочетании с электромобилями переплюнут все альтернативные источники энергии, возглавив список самых экономичных машин этого десятилетия».

Недовольны и те, кто платит из своего кармана за строительство новых заправочных станций. Говорят, что не отказались бы от помощи государства до тех пор, пока не увеличится спрос на водородное топливо и не снизятся затраты на возобновляемые источники энергии.

Том Салливан верит в энергетическую независимость настолько сильно, что вложил все деньги, полученные от сети супермаркетов в компанию SunHydro. SunHydro строит водородные заправочные станции на солнечных батареях. Том считает, что целевое снижение налогов могло бы стимулировать предпринимателей вкладывать деньги в строительство водородных станций, работающих от солнечной энергии. «Необходим стимул, чтобы люди вкладывались в такие предприятия», говорит Том. «Инвесторы в трезвом уме, вероятно, не станут вкладывать деньги в строительство водородных заправочных станций».

В России Правительство в 2020 году утвердило план по развитию водородной энергетики в Российской Федерации до 2024 года. В нем говорится:

Источник https://habr.com/ru/post/575836/

Источник https://1gai.ru/publ/516203-vodorod-v-avtomobilyah-opasnosti-i-slozhnosti-ispolzovaniya.html

Источник https://zap-online.ru/info/avtonovosti/vse-chto-nuzhno-znat-o-vodorodnom-toplive-budushchego

Понравилась статья? Поделиться с друзьями: